

Hetero-Diels-Alder

Case 3. Chelate formation Requirements: - Metal is Lewis acidic (good ionic radius + multivalent) - X has an accessible electron pair

Felkin-Anh Stereoelectronic Model can be used to predict the stereochemical outcome of carbonyl addition reaction but sometimes conditions to favor a chelation-controlled product can be used to generate another stereoisomer.

In the absence of chelation: R' = trityl, silyl (Felkin-Anh model)

- effect of the metal and solvent

Still, W. C. Tetrahedron Lett. 1980, 21, 1031.

- effect of the metal

Keck, G. Tetrahedron Lett. 1984, 25, 265.

major

Still, W. C. Tetrahedron Lett. 1980, 1031.

Kishi, Y. Tetrahedron Lett. 1978, 2745.

Kishi, Y. J. Am. Chem. Soc. 1979, 101, 260.

Jeon, S. J.; Fisher, E. L.; Carroll, P. J.; Walsh, P. J. J. Am. Chem. Soc. 2006, 128, 9618.

Université ሸ

de Montréal

Ida, . J. Org. Chem. 1986, 51, 4246.

Evans, D. A. J. Am. Chem. Soc. 1990, 112, 5290.

Still, W. C. Tetrahedron Lett. 1980, 25, 1035.

Université de Montréal

Reetz, M. T. J. Am. Chem. Soc. 1983, 105, 4833.

 β -chelate: 1,3-induction: Ti much better than Cu

Evans, D. A. J. Am. Chem. Soc. 1988, 110, 4961.

Takahashi Chem. Pharm. Bull. **1986**, *34*, 479.

RK-397

Mycoticin A

Mycoticin B

Surgumycin

Dermostatin A [R = H] Dermostatin B [R = CH_3]

Roflamycoin

Roseofungin

Mycoticin A

T. Cohen (Pittsburg)

Rychnovsky, S. D. Chem. Rev. 1995, 95, 2021.

S. Rychnovski J. Org. Chem. 1993, 58, 3511.

Н

ca. 26 ppm

Nucleophilic Addition to C=O

CHM-6315

Hetero-Diels-Alder

Enantioselective Catalytic Alkylation of Aldehydes

-OH

OH

 R^1

R²

Bis(sulfonamide) complexes: Functionalized Diorganozinc Reagent

- CHM-6315

Bis(sulfonamide) complexes: Walsh's Contribution

Figure 3 Proposed activation modes for aldehydes and ketones by bis(sulfonamido)Ti(O-iPr)2 complexes.

Enantioselectivities are essentially very high with several R groups Bis(trifluoromethanesulfonamide) is easily prepared from 1,2-diaminocyclohexane

 \Rightarrow

 \Rightarrow

Université de Montréal

Chiral Amplification Phenomenon: Positive Non Linear Effect

The conversion of (S,R)-dimer (most stable dimer) into the R- and S-monomer is much slower than the conversion of the (S,S)-dimer into 2 S-monomers. Therefore, the minor enantiomer of the catalyst is completely converted into an unreactive (S,R)-dimer. The reaction is therefore mainly catalyzed by the monomeric species resulting from the major enantiomer.

(S,S)-dimer is less stable because of the syn-geometry of the endo fused 5-4-5 ring vs the (S,R)-dimer that has a anti-geometry of the 5-4-5 ring system.

Review: Girard, C.; Kagan, H. B. Angew. Chem. Int. Ed. Engl. 1998, 37, 2922-2959.
Asymmetric Induction in Dialkylzinc Addition Reactions

K. Soai J. Am. Chem. Soc. **1996**, *118*, 471-472. Tetrahedron Lett. **1996**, *37*, 8783. Tetrahedron **1996**, *52*, 13355. Nature **1995**, *378*, 767.

CHM-6315

Jeon, S. J.; Li, H. M.; Walsh, P. J. J. Am. Chem. Soc. 2005, 127, 16416.

Université de Montréal

	solvent-free	and highly	concer	trated co	nditions	standard conditions			
entry	substrates	1 (mol%)	t (h)	y (%)	ee (%)	1 (mol%)	t (h)	y (%)	ee (%) (config.)
x									
1	X = H	1 0.5	4 21	75 78	97 ^a 96 ^a	2	29	71	96 (<i>S</i>)
2	$X = 3-CF_3$	0.5	17	77	96 ^a	2	14	56	98
3	X = 4-OMe	1 1	12 15	50 72	81 ^a 89 ^b	10	111	85	94
4))	0.5 0.5	12 24	74 76	98 ^a 98 ^b	2	27	90	97
5		1	24 24	78 85	80 ^a 80 ^b	2	102	79	88 (<i>R</i>)
6	Š P	1	15	71	90 ^b	2	26	80	90
7	Ŭ;	1	22	53	93 ^b	2	46	56	96
8	. 7	1	22	36	96 ^b	10	40	76	98
9	Ph	1	24	30	95 ^b	10	38	32	99 (<i>R</i>)
10		1	23	35	99 ^b	10	22	35	>99
11	s	1 1	65 72	78 87	80 ^a 86 ^c	10	40	85	83
12		1 0.5	72 85	85 82	80 ^a 80 ^a	10	50	85	80
13	< ₅⊥ ₀	1	72	70	96 ^a	10	50	75	98
14	Fe	- 1	72	75	89 ^d	10	42	86	90

		Me ₂ Zn 2 equiv	+	Ti(O [/] P 1.2 eq	r) ₄ – uiv	1 (catalytic solvent-fre	:) ee	HC R ₁	D Me	
			standard condition							
entry	substrates	1 (mol %)	t (h)	y (%)	ee (%)	1 (mol %)	t (h)	y (%)	ee (%)	(config.)
1	0	1	15	85	92					
	\sim	0.5	48	83	92	2	45	83	94	(B)
		0.25	60	85	80	2	45	00	34	(11)
	 ✓ 	0.25	72	87	92 ^a					
2 CI		- 1	45	95	94		40	00	00	
0.	ŢŢ,	0.5	60	95	94	2	40	90	90	
3	Â	. 1	43	95	83		10			
Ū	°C₄F	^l 9 0.5	45	93	77	2	48	81	85	
4		1	45	75	96			~ .		
20	Ű	0.5	44	83	95	10	40	84	99	
	° V	1	22	77	96					
5	C5H11	0.5	44	78	97	10	40	62	99	
6	° °	9	24	90	97					
		S 05	44	83	97	10	40	81	99	
l		0.25	70	84	92	10	40	0.	00	
7	ОТВО	PS 1	60	90	96	10	60	84	98	
8 (Ph	1	24	43	99	10	38	20	99	

Jeon, S. J.; Li, H. M.; Walsh, P. J. J. Am. Chem. Soc. 2005, 127, 16416.

B	O ↓ + ZnR₂ B₂	+ Ti(0	D [/] Pr) ₄	1 solver	(catalytic)		} R₂		
201	3 equiv	1.2	equiv	highly	concentrated	1.14	- 2		
	solvent	-free and h	highly c	oncentra	ted conditions	star	dard c	ondition	s
entry substrates	ZnR ₂	1 (mol%)	t (h)	y (%)	ee (%)	1 (mol%)	t (h)	y (%)	ee (%)
1	Zn((CH ₂) ₄ OTBS) ₂	1	48	68	79 ^a				
0		0.5	70	53	80 ^a	10	70	90	09
\sim		0.25	82	44	69 ^a	10	12	09	30
Ŷ		1	40	68	97 ^b				
2	$Zn((CH_2)_5Br)_2$	1	46	66	92 ^a				
		0.5	50	41	92 ^a	10	72	89	96
		1	46	71	97 ^b				
3	Zn((CH ₂) ₅ Br) ₂	1	40	55	94 ^a				
0		0.5	76	47	94 ^a				
Ĭ		0.25	84	30	76 ^a	10	72	55	94
		0.25	90	30	90 ^{a,c}				
~ ~		1	38	72	97 ^b				
4	Zn((CH ₂) ₃ CHMe ₂);	2 1	18	56	94 ^b	10	72	75	90
5	Zn((CH ₂) ₃ CHMe ₂);	2 1	27	63	93 ^b	10	72	86	93
6	Zn((CH ₂) ₄ OTBS) ₂	1	21	76	87 ^b	10	120	65	90
7	Zn((CH ₂) ₅ Br) ₂	1	36	65	89 ^b	10	48	48	90

Jeon, S. J.; Li, H. M.; Walsh, P. J. J. Am. Chem. Soc. 2005, 127, 16416.

Hetero-Diels-Alder

Takai, Nozaki J. Am. Chem. Soc. 1986, 108, 6048 and 7408 (Kishi, J. Am. Chem. Soc. 1986, 108, 5644)

Catalytic version, Fürstner: CrCl₂ (catalytic), Mn , TMSCI

Review: Hargaden, G. C.; Guiry, P. J. Adv. Synth. Catal. 2007, 349, 2407.

Université 祔

de Montréal

Guo, H. B.; Dong, C. G.; Kim, D. S.; Urabe, D.; Wang, J. S.; Kim, J. T.; Liu, X.; Sasaki, T.; Kishi, Y. J. Am. Chem. Soc. 2009, 131, 15387.

Lurain, A. E.; Walsh, P. J. J. Am. Chem. Soc. 2003, 125, 10677-10683. Chen, Y. K.; Lurain, A. E.; Walsh, P. J. J. Am. Chem. Soc. 2002, 124, 12225-12231.

Dahmen, S.; Bräse, S. Org. Lett. 2001, 25, 4119-4122.

 \pm 1,2-disubstituted alkenylzinc were not as effective (ee: 75-88%)

Synthesis of ligand by resolution: Rozenberg Eur. J. Chem. 2000, 3295.

Table 1: Reaction of cinnamyl chloride (2 a) with water. ^[a]								
	(<i>S</i>)-	1 (cat.)	QH					
Ph ^r V Cl	+ H ₂ O	O ₃ , THF	Ph					
2a	25 °	°C, 4 h	3a					
	(<i>S</i>)-1a: A O T+ O (<i>S</i>)-1b: A Ar _o PF ₆ ⁻	$Ar = \xi - \bigwedge$ $Ar = \xi - \bigwedge$	(S)-1d: Ar = $\xi - \bigvee_{F}^{F}$ (S)-1e: Ar = $\xi - \bigvee_{Pr}^{i}$					
Mech	(<i>S</i>)-1c: /	Ar = ξΟΜ	e (<i>S</i>)-1f: Ar = ξ-					
		`	[/] Pr					
Entry	Cat.	Yield [%] ^[b]	<i>ee</i> [%] ^[c,d]					
1	(S)-1 a	99	81 (<i>R</i>)					
2	(S)- 1 b	99	88 (R)					
3	(S)- 1 c	99	90 (<i>R</i>)					
4	(S)-1 d	99	88 (R)					
5	(S)- 1 e	99	87 (R)					
6	(S)-1 f	97	81 (<i>R</i>)					

Université de Montréal

	Me ,O
	\mathbf{M}
t-Bu	/
MeCN	"_ /
MeCN	$P \longrightarrow$ Ar ₂

[a] Reaction conditions: **2a** (1.0 mmol), cat. (10 μ mol), NaHCO₃ (1.2 mmol), THF (4 mL), and H₂O (0.5 mL), 25°C, 4 h. [b] Yields of the isolated products. [c] Determined by HPLC analysis using a chiral stationary phase. [d] Configuration is given in parentheses. THF = tetrahydrofuran.

Table 2: Reaction of allylic chlorides (2) with water.^[a]

		(<i>S</i>)-1 (c	cat.)	QH	
	R ♥ CI + H ₂ O = 2	NaHCO ₃ 25 °	, THF C	R 3	
Entry	Substrate	Cat.	<i>t</i> [h]	Yield [%] ^[b]	ee [%] ^{[c,d}
1	2 b (R = 4-MeC ₆ H ₄)	(S)- 1 d	4	99	90 (<i>R</i>)
2	2c (R=4-MeOC ₆ H ₄)	(<i>S</i>)-1 b	4	99	76 (R)
3	$2d (R = 4-CF_3C_6H_4)$	(S)- 1 c	12	99	94 (R)
4	2e (R=4-MeO ₂ CC ₆ H ₄)	(S)- 1 c	12	99	93 (R)
5	2 f ($R = 4$ -OHCC ₆ H ₄)	(S)-1 c	12	93	93 (R)
6	2g (R = 1-naphthyl)	(S)-1 c	4	99	90 (R)
7	2h (R=2-naphthyl)	(S)-1 c	7	95	89 (R)
8	2i (R = (E)-PhCH=CH)	(S)-1 b	4	96	96 (R)
9	2j (R = PhCH ₂ CH ₂)	(S)-1 d	12	99	85 (S)
10	$2k (R = n - C_5 H_{11})$	(S)-1 d	18	78	83 (S)
11	21 ($R = c - C_6 H_{11}$)	(S)-1 b	18	87	97 (R)
12	$2 m (R = tBuPh_2SiOCH_2)$	(S)- 1 c	12	99	90 (R)

[a] Reaction conditions: **2** (1.0 mmol), cat. (10 μ mol), NaHCO₃ (1.2 mmol), THF (4 mL), and H₂O (0.5 mL), 25 °C, 4 h. [b] Yields of the isolated products. [c] Determined by HPLC analysis using a chiral stationary phase. [d] Configuration is given in parentheses.

Scheme 2. Proposed reaction pathway for asymmetric allylic hydroxylation.

Li, H. M.; Walsh, P. J. J. Am. Chem. Soc. 2004, 126, 6538-6539.

Scheme 3. Asymmetric Vinylation of Ketones

Université de Montréal

Vinylation of Ketones

CHM-6315

Biradar, D. B.; Gau, H.-M. Org. Lett. 2009, 11, 499.

Université de Montréal

Phenyl Transfer of Mixed Diorganozinc: Bolm's Improvement

	R in RCHO	Yield	ee	conf.
	4-CIC ₆ H ₄	86	97	R
Ph ₂ Zn + Et ₂ Zn	4-MeOC ₆ H ₄	82	98	R
	3-MeOC ₆ H ₄	99	96	R
4	4-MeC ₆ H ₄	86	98	R
	4-PhC ₆ H ₄	98	97	R
	2-Np	70	96	R
17	2-BrC ₆ H ₄	64	91	R
PhZnEt	2-Furyl	99	95	R
	E-PhCH=CH	97	a ee 97 98 96 98 97 97 96 97 96 91 95 90 92 90 94 83 91	R
	<i>t</i> -Bu	68	94	S
	Bn	82	83	S
	CHMe ₂	75	91	S

 \Rightarrow

 \Rightarrow Unlike with Et₂Zn, the addition to aldehydes proceeds smoothly even in the absence of a catalyst

 Ph_2Zn + Et_2Zn - 2 PhZnEt

more reactive

less reactive

Use of a large excess of Et₂Zn presumably displaces the equilibrium toward the formation of PhZnEt

No other arylzinc reagent has been tested

Kim, J. G.; Walsh, P. J. Angew. Chem. Int. Ed. 2006, 45, 4175-4178.

76%, 75% ee

91%, 91% ee

Arylation of Ketones

CHM-6315

Chen, C.-A.; Wu, K.-H.; Gau, H.-M. Angew. Chem. Int. Ed. 2007, 46, 5373.

Grignard Addition to Ketones: Stoichiometric Process

CHM-6315 Ph Ph Н 1.1 eq of diol A ЮН OH 2. ketone (-100 °C) 3 RMgBr DIOL A .OH R" R' 3. NH₄CI Н `Ph Ph Et OH R Bu OH Et Eţ OH OH OH Έt Me Ме Ме 95 : 5 0% yield! 95 : 5 (97:3 Np) 85:15 96 : 4 to > 99 : 1 (EtMgX) (BuMgX) (EtMgX) (EtMgX) (RMgX) Eţ OH Eţ OH Me `Me Εť ЮН 98:2 98:2 (EtMgX) (EtMgX) 75:25 (EtMgX)

Enantioselective addition of Grignard reagents to ketones (stoichiometric amounts of chiral ligand)

Weber, B.; Seebach, D. Angew. Chem. Int. Ed. 1992, 31, 84-86.

Trost, B. M.; Weiss, A. H. Advanced Synthesis & Catalysis 2009, 351, 963.

Addition of Alkynes to Aldehydes: Carreira's Approach

Frantz, D. E.; Fassler, R.; Tomooka, C. S.; Carreira, E. M. Acc. Chem. Res. 2000, 33, 373. Frantz, D. E.; Fassler, R.; Carreira, E. M. J. Am. Chem. Soc. 2000, 122, 1806.

Anand, N. K.; Carreira, E. M. J. Am. Chem. Soc. 2001, 123, 9687-9688.

Université 해

de Montréal

Cyanohydrin Formation: sp Carbon Nucleophiles

Relative stereocontrol:

Wilkinson, H. S.; Grover, P. T.; Vandenbossche, C. P.; Bakale, R. P.; Bhongle, N. N. et al. *Org. Lett.* 2001, *3*, 553-556.
Ward, D. E.; Hrapchak, M. J.; Sales, M. *Org. Lett.* 2000, *2*, 57-60.
Nicolaou, K. C.; Vassilikogiannakis, G.; Kranich, R.; Baran, P. S.; Zhong, Y. L. et al. *Org. Lett.* 2000, *2*, 1895-1898.
Myers, A. G.; Zhong, B. Y.; Kung, D. W.; Movassaghi, M.; Lanman, B. A. et al. *Org. Lett.* 2000, *2*, 3337-3340.

Chiral Catalysts:

Université ท

de Montréal

Kobayashi, S.; Tsuchiya, Y.; Mukaiyama, T. *Chem. Lett.* **1991**, 537-540.
Hwang, C.-D.; Hwang, D.-R.; Uang, B.-J. *J. Org. Chem.* **1998**, *63*, 6762-6763.
Bolm, C.; Muüller, P.; Harms, K. *Acta Chem. Scand.* **1996**, *50*, 305-315.
Corey, E. J.; Wang, Z. *Tetrahedron Lett.* **1993**, *34*, 4001-4004.
Hayashi, M.; Miyamoto, Y.; Inoue, T.; Oguni, N. *J. Org. Chem.* **1993**, *58*, 1515-1522.
Nitta, H.; Yu, D.; Kudo, M.; Mori, A.; Inoue, S. *J. Am. Chem. Soc.* **1992**, *114*, 7976-7975.
Belokon, Y. N.; North, M.; Parsons, T. *Org. Lett.* **2000**, *2*, 1617-1619.

Recent review:

Gregory, R. J. H. Chem. Rev. 1999, 99, 3649.

Enantioselective Cyanohydrin Formation: Shibasaki's Aluminum Catalyst

Review (concept): Shibasaki, M.; Sasai, H.; Arai, T. Angew. Chem. Int. Ed. 1997, 36, 1236-1256.

Ρh

D. Sawada, M. Shibasaki, Angew Chem Int Ed 2000, 39, 209. Sawada, D.; Kanai, M.; Shibasaki, M. J Am Chem Soc 2000, 122, 10521-10532.

RCHO + TMSCN	0.1 eq cat. 1 Ph₃PO, toluene, 0 °C	$\begin{array}{c} H_{I,I} \\ R \\ R \\ R \\ R \\ R \\ C \\ N \\ C \\ N \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	H,, OH R R CN
R	time, h	% isolated yield	% ee ^{a,b}
phenyl	40	94	95
2-tolyl	72	95	91
4-anisyl	40	91	90
4-cyanophenyl	144	98	97
cyclohexyl	40	97	90
tert-butyl	40	96	91
n-hexyl	48 ^c	96	91

^{*a*} Enantioselectivities determined by GC or ¹H NMR analysis of cyanohydrins. ^{*b*} Performed using 0.2 equiv of Ph₃PO. ^{*c*} Reaction temp = -20 °C.

Me

Me

Cyanohydrin From Ketones

Shibasaki J. Am. Chem. Soc. 2000, 122, 7412