

Hetero-Diels-Alder: Introduction

CHM-6315

CHM-6315

Alternative Pathway (Mukaiyama Aldol + cyclization):

Reviews: (a) Danishefsky, S.J.; De Ninno, M.P. Angew. Chem. Int. Ed. 1987, 26, 15-23. (b) Waldmann, H. Synthesis 1994, 535-551. (c) Jorgensen, K.A. Angew. Chem. Int. Ed. Eng. 2000, 39, 3558-3588.

CHM-6315

Relative stereocontrol

Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 6798.

Direct Cross-Aldol Reaction of Aldehydes: 2nd Generation

Direct Cross-Aldol Reaction of Aldehydes: 2nd Generation

Carbohydrate Synthesis Using Organocatalysis/Mukaiyama Aldol

CHM-6315

Northrup, A. B.; Mangion, I. K.; Hettche, F.; MacMillan, D. W. C. *Angew. Chem. Int. Ed.* **2004**, *43*, 2152. Northrup, A. B.; MacMillan, D. W. C. *Science* **2004**, *305*, 1752.

CHM-6315

CHM-6315

 \cap

Slightly lower yield with alkyl-substituted aldehydes

Université 👬

Slightly lower yield with aryl-substituted aldehydes Ligand:Ti ratio?

- CHM-6315

Ph 70% y. 99% ee 90% y. 83% ee 2-CIPh 66% y. 89% ee 2-MePh 3-CIPh 83% y. 98% ee 3-MePh 73% y. 99% ee 61% y. 98% ee 3-MeOPh 4-CNPh 86% y. 94% ee 4-BrPh 73% y. 93% ee 4-FPh 89% y. 94% ee 4-MePh 93% y. 99% ee 4-MeOPh 83% y. 99% ee 4-NO₂Ph 99% y. 99% ee 78% y. 99% ee 1-naphthyl 2-naphthyl 82% y. 97% ee 3,4-Cl₂Ph 77% y. 98% ee 3-pyridine 65% y. 98% ee 64% y. 92% ee PhCH=CH CH_3CH_2 88% y. 94% ee CH₃CH₂CH₂ 70% y. 92% ee *i*-PrCH 84% y. 91% ee $CH_3(CH_2)_3$ 89% y. 91% ee $C_{6}H_{11}$ 61% y. 85% ee

20 mol%

Ph	86% y. 99% ee
2-CIPh	99% y. 90% ee
2-NO ₂ Ph	99% y. 91% ee
3-CIPh	82% y. 98% ee
3-NO ₂ Ph	85% y. 98% ee
3-MeOPh	99% y. 91% ee
4-CNPh	95% y. 92% ee
4-CIPh	66% y. 96% ee
4-FPh	73% y. 94% ee
4-MeOPh	84% y. 90% ee
4-NO ₂ Ph	80% y. 96% ee
1-naphthyl	40% y. 97% ee
2-naphthyl	69% y. 96% ee
3,4-Cl ₂ Ph	87% y. 99% ee
2,4-Cl ₂ Ph	70% y. 94% ee
2,6-Cl ₂ Ph	63% y. 83% ee
2-pyridine	99% y. 98% ee
3-pyridine	98% y. 96% ee
2-furyl	99% y. 97% ee
PhCH=CH	47% y. 85% ee
$CH_3(CH_2)_4$	41% y. 87% ee

CHM-6315

Université m

de Montréal

PN	71% y. 93% ee
2-CIPh	70% y. 99% ee
3-MePh	53% y. 93% ee
3-CIPh	70% y. 90% ee
4-CNPh	61% y. 90% ee
4-CIPh	87% y. 97% ee
4-FPh	53% y. 93% ee
4-NO ₂ Ph	56% y. 91% ee
2-naphthyl	61% y. 96% ee
3,4-Cl ₂ Ph	54% y. 87% ee.
24 CI Dh	

d scope; low yield and ee with aliphatic aldehydes. 6/% y. 95% ee 2,4-01₂PN

Conclusion: High yields and high enantioselectivities with many catalysts but relative high catalyst loadings

**The catalyst loading is calculated based on the number of equivalents of chromium relative to the limiting aldehyde substrate.

92% y. 95% ee (2)

77% y. 95% ee (2)

Hetero-Diels-Alder Reactions with Chiral Aldehydes

CHM-6315

Doyle (2001, 2004)

CHM-6315

CHM-6315

Hashimoto (2004)

CHM-6315

Rawal (2005)

Me (1b)	75% y. 97% ee
<i>n</i> -propyl (1a)	76% y. 94% ee
PhCH ₂ CH ₂ (1a)	95% y. 95% ee
PhSCH ₂ CH ₂ (1a)	76% y. 94% ee
Phth(CH ₂) ₃ (1a)	67% y. 92% ee
1-propyny (1a)	42% y. 98% ee
<i>i</i> -butyl (1a)	79% y. 90% ee
<i>c</i> -hexyl (1a)	99% y. 84% ee

Ph (1b)	84% y. 98% ee
3-MeOPh (1b)	86% y. 98% ee
2-NO ₂ Ph (1b)	93% y. 98% ee
1-naphthyl (1b)	67% y. 97% ee
2-furyl (1b)	96% y. 99% ee

()

Ot

 \mathbf{O}

Université de Montréal

CHM-6315

J- 31

CHM-6315

Wada, **1994**

J. Am. Chem. Soc. 1998, 120, 4895

 \mathbb{R}^2 \mathbb{R}^2 R R¹ 5-10 mol% 1 + MS 4A / neat OEt OEt OH₂ 2 OH₂ $^{\prime}$ O Cr dimer 1 Me *i*-Pr *n*-Pr *n*-Bu OEt OEt OEt OEt **OEt** 5 mol%, 75% y. 94% ee 10 mol%, 72% y. 94% ee 5 mol%, 73% y. 94% ee 5 mol%, 75% y. 94% ee 5 mol%, 70% y. 95% ee CH₂OBn CH₂OTBS OBz CO₂Et Me Me OEt OEt OEt 'OEt 'OEt 5 mol%, 95% y. 92% ee 7 mol%, 75% y. 92% ee 5 mol%, 80% y. 89% ee 5 mol%, 90% y. 95% ee 5 mol%, 90% y. 95% ee 4-MeOPh Ph 4-NO₂Ph 2-NO₂Ph Br OEt **OEt** OEt OEt OEt 10 mol%, 75% y. 98% ee 5 mol%, 75% y. 98% ee 10 mol%, 40% y. 98% ee 10 mol%, 90% y. 98% ee 10 mol%, 80% y. 98% ee

Angew. Chem., Int. Edit. 2002, 41, 3059

CHM-6315

J. Am. Chem. Soc. 2003, 125, 9308

Angew. Chem., Int. Edit. 2003, 42, 1498

Inverse-Electron-Demand Hetero-Diels-Alder

J. Am. Chem. Soc. 2006, 128, 15088

Inverse-Electron-Demand Hetero-Diels-Alder

J. Am. Chem. Soc. 2006, 128, 15088

Kirkland, T. A.; Colucci, J.; Geraci, L. S.; Marx, M. A.; Schneider, M.; Kaelin Jr., D. E.; Martin, S. F. J. Am. Chem. Soc. 2001, 123, 12432-12433.

Liu, P.; Jacobsen, E. N. J. Am. Chem. Soc. 2001, 123, 10772-10773.

(antifungal agent)

Retrosynthetic Analysis of Ambruticin

CHM-6315

Martin Synthesis of the A Ring

CHM-6315

Université de Montréal

Martin's Final Assembly of Ambruticin S

CHM-6315 Me ŚO2 '<u>ı</u>_ -OTBS Me ÇOOMe H Ĥ 1. NaHMDS, DMF \cap 2. TFA, THF, H₂O ÇOOMe Ο ·.._ -OH Ĥ **''OTBS O**TBS **Dess-Martin** ́′′ОТВЅ ŌTBS Me ÇOOMe H, Н \cap · _____0 **''OTBS** ŌTBS QН 1. Cl₂(PCy₃)Ru=CHPh \mathbf{O} BF3•OEt2 .,,\Et CH_2Cl_2 , reflux H TsO. О. "、Et CH₂Cl₂ .0. 2. TPAP, NMO TsO 60% HO `Ме

Martin's Final Assembly of Ambruticin S

J- 49

Asymmetric Hydroformylation

CHM-6315

Horiuchi Chem. Comm. 1996, 155 Nozaki Tetrahedron 1997, 7795

Jacobsen's Completion of the Synthesis

J- 55

Morita-Baylis-Hillman Reaction

Problem

Low rate Low conversion/yield Highly substrate dependant

Improvements

High pressure and microwave

N.S. Isaacs. *J.Chem.Res.(S)***1988**, 330-331 S.V. Bhat, *Synlett.* **1994**, 444

Low temperature

J. W. Leahy, J. Org. Chem. 1997, 62, 1521-1522

Base modification (quinuclidinol, DBU, DABCO)

S. E. Drewes, Synth. Commun. 1988, 18, 1565-1568

V. K. Aggarwal, Chem. Commun. 1999, 62, 2311-2312

Addition of Lewis acids

V. K. Aggarwal, J. Org. Chem. 1998, 63, 7183-7189

- Chiral tertiary amine catalysts (Hatakeyama)
- Chiral tertiary phosphine catalysts (only effective in aza-MBH)
- Lewis acid catalysts
- Bronsted Acid catalysts (thioureas, binol, proline, ammonium salts

Stepwise Baylis-Hillman

A. G. M. Barrett and Akio Kamimura. J. Chem. Soc., Chem. Commun. 1995, 1755-1756

Chiral Auxiliary-based Baylis-Hillman

J. W. Leahy. J. Am. Chem. Soc. 1997, 119, 4317-4318

R	Yield (%)	ee (%)
CH ₃	85	>99
CH ₃ CH ₂	98	>99
CH ₃ CH ₂ CH ₂	70	>99
(CH ₃) ₂ CH	33	>99
PhCH ₂ CH ₂	68	>99
AcOCH ₂	68	>99
(CH ₃) ₂ CHCH ₂	67	>99
Bn	0	-

^{*a*} Reactions were run with 1 mmol of aldehyde, 2 mmol of cyclohexenone, 2 mmol of PEt₃, and 10 mol % catalyst in THF (1 M) at -10 °C for 48 h under Ar, followed by flash chromatography on silica gel. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} 20 mol % catalyst.

Figure 1. Binaphthol-derived Brønsted acids.

J. Am. Chem. Soc. **2003**, 125, (40), 12094 *Angew. Chem. Int. Ed.* **2006**, 45, (30), 4929 Université de Montréal

OH

3

 $ee(\%)^{\circ}$

83

80

81

81

80

82

81

R

Org. Lett. 2005, 7, (19), 4293

CHM-6315

Université de Montréal

^{*a*} See footnote in Table 1. ^{*b*} Isolated yield after chromatographic purification. ^{*c*} Determined by chiral HPLC analysis (Chiralpak AS-H or Chiralcel OD-H).

CHM-6315

Trost, B. M.; Tsui, H.-C.; Toste, F. D. J. Am. Chem. Soc. 2000, 122, 3534-3535.

